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Abstract. We analyse four interacting random-walk models from a comparative point of 
view, concentrating on one-dimensional versions. We consider an interacting random-walk 
model recently introduced by Stanley et a/, the Domb-Joyce model, and the ‘true‘ self- 
avoiding walk of Amit et al. In addition, we introduce a model based on the weighting of 
turning points, whose properties are related to those of the Ising spin chain. Fixed points 
and their stability are identified for both attractive and repulsive correlations in all four 
cases. We compare the mechanisms involved in each of these models and comment on 
the role played in each by its particular form of correlation between steps. The different 
universal behaviours are shown to arise from competition between short-range and long- 
range (and particularly cumulative) memory effects, and between local and global normalisa- 
tion conditions. 

In the past few years, a considerable amount of work has been done on a number of 
‘interacting random-walk’ models. These differ from the well known non-interacting 
random walk model (applicable for example to brownian motion) in that they incorpor- 
ate suitably chosen correlations between steps. This is done in order to account for 
particular features of physical systems or processes, whose complexity goes beyond 
what can be obtained from a simple brownian-motion picture. An early example is 
that of the ‘self-avoiding walk’ (SAW); in its simplest version, it is a random walk 
subject to the condition that a given site cannot be visited more than once. This 
constraint simulates the excluded volume repulsion acting between segments of a 
flexible polymer chain; indeed the SAW turns out to provide an accurate model for the 
configurations of isolated polymer chains in a good solvent, this being a system where 
excluded volume is the only relevant parameter (see e.g. de Gennes 1979 and references 
therein). 

The Domb-Joyce model for polymer chains (Domb and Joyce 1972) was an attempt 
to interpolate between the random walk and the SAW. In it, each self-intersection has 
a weight 1 - w between 0 and 1 (more precise definitions are given below). It has been 
found that, for any w > 0, the asymptotic behaviour of the Domb-Joyce model is the 
same as that of the SAW (which corresponds to w = 1); see Domb (1983), and references 
therein. At w = 0 one recovers the uncorrelated random walk. 

More recently, two variants of interacting random walks have received special 
attention: one is a model introduced by Stanley et a1 (1983), in which each new site 
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visited has a weight p and which exhibits certain hyperuniversal, that is, dimension- 
independent, properties, much the same as in the problem of diffusion in randomly 
porous media (see e.g. Alexander and Orbach 1982). The other is the ‘true’ self-avoiding 
walk (TSAW) defined by Amit et a1 (1983) as the problem of the traveller who steps at 
random but tries to avoid places he has already visited; it has been proposed that the 
two-dimensional TSAW could be a model for polymer adsorption on a surface under 
suitable conditions (Bulgadaev and Obukhov 1983). 

Besides their potential applicability to concrete physical situations, these models 
display some peculiar features, such as the fact that they belong to different universality 
classes from the random walk or the ordinary SAW (although they do cross over either 
to random walk or SAW behaviour in suitable limits). The question can then be raised 
as to whether one can build a unified picture of the mechanisms underlying the various 
crossovers in the above mentioned models. Such a picture would be of help towards 
a better theoretical understanding of generalised random-walk problems. In what 
follows, we analyse four interacting random walk models from a comparative point 
of view, discussing the role played in each by its particular form of correlation between 
steps. We shall concentrate on one-dimensional versions ; this is because, while already 
exhibiting non-trivial behaviour, these are usually amenable to exact (or at least 
asymptotic) solutions ; even for models in which such solutions do not exist, their 
one-dimensional character makes it easy to obtain definite evidence about qualitative 
behaviour from e.g. series studies (Stella et a1 1984; see also below). 

We first recall the main features of both the interacting random-walk model of 
Stanley et a1 (1983) and of the TSAW. We then introduce a one-dimensional short-range 
interacting model, based on weighting a random walk according to how many times 
the walker changes direction (we call it the ‘turning-point’ model), and explore its 
relationship to other models. The one-dimensional Domb-Joyce model is then dis- 
cussed (for the first time, as far as our knowledge goes) in both the repulsive and 
attractive limits. Finally, a discussion of the mechanisms involved in each of these 
models is given, and general comments are made about the behaviour of interacting 
random walk models. 

The model introduced by Stanley et a1 (1983) is a random walk, where to each new 
site visited a weight p is attributed, so a walk which visits s distinct sites has a weight 
p s .  The correlation between steps is thus attractive or repulsive depending on whether 
p is smaller or greater than one; at p = 1 the uncorrelated random walk is recovered. 
In the repulsive case one finds that, if the number N of steps is sufficiently large, the 
dominant behaviour is that of an ordinary SAW (Stanley et a1 1983). This means that 
the average end-to-end distance is (RL)”’ -  N ” ,  where Y = 3/(d +2) for space 
dimensionality 1 < d S 4 (equality holds at d = I and 4), and that for d > d, = 4, the 
upper critical dimensionality of SAWS, repulsion becomes irrelevant and the pure 
random-walk behaviour dominates with v = f (de Gennes 1979). For attractive correla- 
tion, Stanley et a1 (1983) point out that the mean-square displacement appears to 
saturate at a finite value in two and three dimensions; in one dimension, the saturation 
effect does not occur. Actually, the one-dimensional case has been asymptotically 
solved (Redner and Kang 1983), and it has been found that for O < p  < 1 the average 
number of visited sites (S , )  is proportional to it is expected that in one dimension, 
the root-mean-square displacement should scale as ( S N ) ,  so (RL)”’ - N i l 3  in the 
attractively correlated one-dimensional walk. 

The ‘true’ self-avoiding walk (TSAW) is defined as follows (Amit et a1 1983): on a 
lattice, the traveller has to move to one of the Z first neighbours of the site he is at. 
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The probability Pi of moving to a site i depends on the number of times ni this site 
has already been visited: 

The parameter g > 0 defines the strength with which the walk repels itself. One can 
also make an extension to the attractive case g < 0; for g = 0 one recovers the ordinary 
random walk. 

The upper critical dimensionality of the TSAW is two (Amit er a1 1983); from a 
self-consistent approach, Pietronero (1983) obtained an explicit approximate expression 
for the end-to-end distance exponent v, for d S 2 in the repulsive case, namely: 

v = 2 / ( d  + 2 )  d s 2 .  (2 )  

He does not consider attractive correlations. Equation (2) gives v = $ in one dimension, 
a result which is expected to hold as long as the repulsion parameter g is finite; in the 
infinite repulsion limit, one has the ordinary one-dimensional SAW, with v = 1 
(Pietronero 1983). This view is supported by the scaling and crossover arguments of 
de Queiroz er a1 (1984). In dimensions greater than one, there is no change of universality 
class at g =CO (Amit er a1 1983, de Queiroz er a1 1984, Stella er a1 1984; see also the 
Monte Carlo simulations of Angles d’Auriac and Rammal (1984) on a Sierpinski 
gasket). The value of v = 3 for positive, finite g in one dimension has been given 
support by Monte Carlo simulations (Bernasconi and Pietronero 1983, Rammal et a1 
1984), exact enumeration (Stella er a1 1984) and scaling arguments (Obukhov 1984). 
It has been found that in one dimension the attractive TSAW ( g < O )  is always self- 
trapping (Stella et a1 1984, Rammal et a1 1984). 

The above picture indicates that the effects of correlation between steps in the 
one-dimensional TSAW are more drastic in the attractive case than in the repulsive one: 
the smallest degree of attraction causes the TSAW to trap itself, whereas one needs 
infinite repulsion to recover the ordinary SAW behaviour. On the other hand, the 
interacting random walk of Stanley er a1 (1983) displays features that are in a sense 
complementary to those of the TSAW: in one dimension, it will only trap itself for 
infinite attraction, and it will behave as an ordinary SAW for any non-zero repulsion. 

At this point, it is important to emphasise a basic difference between the TSAW and 
the ordinary SAW: in the former, it is a local criterion provided by equation (1) above 
which tends to drive the walker away from his previous steps, whereas for the latter, 
it is the total number of intersections that matters (Amit et a1 1983, Pietronero 1983). 
Indeed, when used in the context of an effective-medium approximation these criteria 
have led respectively to the expression v = 2 / ( d  +2) ,  d 6 2 ,  for the TSAW and to the 
well known Flory value v = 3 / ( d  +2) ,  d s 4, for the ordinary SAW (Pietronero 1983). 
A moment’s thought shows that it is also the total number of self intersections that 
plays the important role in the model of Stanley et al (1983); hence it is not surprising 
that in the repulsive regime it behaves as an ordinary SAW. (That is, (R’N>’’’- N ”  with 
v = 1 in d = 1 for large N.)  This is also the case in the Domb-Joyce model (Domb 
1983; see below). 

The question then arises of why the TSAW differs from a pure non-interacting 
random walk. We argue that this effect is due to an injnitely long-range memory in 
addition to the local criterion described above. In order to support this argument, we 
now proceed to discuss an interacting random walk model in which a local criterion 
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is used, but which displays a short-range memory effect, and see how it differs from 
the TSAW. 

Consider a one-dimensional random walk in which each step has a different 
probability according to whether it is in the same direction as or opposite to the 
immediately preceding one. This problem bears a formal analogy to the king spin 
chain: if (T~ = i l  denotes a step in the positive or negative direction, the correlation 
described above can be written as: 

P ( a J  = eg"d"I-l/(eg +e-g) (3) 

where P((T,)  is the probability that the ith step be given in the (T, direction, and depends 
on the direction of the previous step uiPl ; the parameter g characterises the strength 
of the correlation. Again g = 0 corresponds to the unbiased random walk, and g = *a3 
correspond respectively to a 'ferromagnetic' or 'antiferromagnetic' ground state. Since 
the intrinsic probability of an N-step configuration is given by the product of the 
probabilities of each of its steps, it can easily be seen that the average squared end-to-end 
distance is 

with 

That is to say, the end-to-end distance in this model is related to a correlation function 
of the Ising chain; this can be evaluated using standard transfer-matrix methods. If 
periodic boundary conditions are assumed (the precise boundary condition turns out 
to be of no importance here), one has: 

( R k ) = N e 2 g ( l - t N ) / ( 1 + t N )  (6) 
where t tanh g. For any finite g (positive, zero or negative) and N -, 00, ( R k )  = N eZg, 
whence the behaviour is always that of a standard random walk, with the correlation- 
length exponent v = f ;  the amplitude eg gives the size of an effective step in the scaled 
uncorrelated random walk. From (6) one also obtains ( R L )  = N2 as g - ,  +a and 
(R$)-,O or ( R L )  = 1 for g +  -CO, depending on whether N is even or odd (more 
precisely, these limits are obtained if e2Ig' >> N >> 1, that is, the crossover variable is 
N e-2'g'). 

We have thus seen that it is the combination of a local criterion for the weighting 
of steps plus an infinite-range memory effect which in the repulsive regime casts the 
TSAW between the SAW and the random walk. On the other hand, the random walk 
behaviour of the turning point model is due to a local criterion plus finite-range memory. 

In the Domb-Joyce model, it is a global criterion that determines the weight of a 
walk, namely, if ri and rj are the positions of lattice sites occupied by the ith and j th  
steps bf the walk, an N-step configuration has the weight; 

I t  can be seen from (7) that in this case, the memory effect is not only infinitely 
long-ranged, but also cumulative: if a site is visited n times, it contributes a factor 
( 1  - W ) n ( n - 1 ) / 2  to the weight of the walk; a cumulative behaviour is also present in the 
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TSAW, as seen from equation (1) above. In the model of Stanley et a1 (1983) this is 
not the case: there, it does not matter how many times a site has been visited, only 
whether it has been visited or not. 

The Domb-Joyce model has been extensively studied in three dimensions (Domb 
1983); to our knowledge, its one-dimensional version has not been discussed, perhaps 
due to one’s intuition that it should be trivial. However, we felt that it had to be 
checked, in order to widen the frame of the present comparative study. We have done 
exact enumeration of the average squared end-to-end distance of the one-dimensional 
Domb-Joyce model, for walks of up to 21 steps, both in the repulsive (0< w < 1) and 
attractive ( w  < 0) cases. Indeed, in the repulsive limit the behaviour crosses over to 
that of the SAW, as in higher dimensions. On the other hand, although it traps itself 
for any w < 0, it has a different behaviour from that of the attractive TSAW: there, one 
has a saturation of both the average number of visited sites SN,  and of the end-to-end 
distance R,(Rammal et a1 1984); in the Domb-Joyce case, the average maximum 
extent of the walk saturates, but the end-to-end distance seems to collapse. Further 
work is in progress along these lines, and will be published elsewhere. 

In figure 1 we show schematically the universality classes for the Domb-Joyce 
model, the TSAW, the interacting random walk and the turning-point model, all of them 
for both repulsive and attractive correlations. 

A t t r a r t l o n  I Repulsion 
4 c 

( a )  v : o  112  1 
n - 
v - 

lb l  v : o  1 1 2  2 1 3  1 * =  r\ 
a -  - 

id1 v = o  1 / 2  1 
a - - 

Figure 1. Universality classes for: ( a )  Domb-Joyce model; ( b )  TSAW; ( c )  interacting random 
walk of Stanley er al (1983); ( d )  turning-point model defined in the text. All for one 
dimension; full (open) circles denote stable (unstable) fixed points. 

A comparative analysis of these models can be made in terms of an energy-entropy 
balance: in general, the least energetic configuration will be either a completely stretched 
(recall that we are restricting to one-dimensional problems) or a ‘piled-up’ one, 
depending on whether correlations are repulsive or attractive. Both have zero entropy; 
on the other hand, a random-walk configuration (whose entropy is maximised) is likely 
to be highly energetic. The specific way in which the energy term is written, and the 
way in which it compares to the entropic term, determine which one dominates, or 
whether both are of the same order of magnitude (in which case an intermediate 
behaviour appears). 

Thus, for finite g, the ‘turning-point’ model, as already known from the thermo- 
dynamics of the Xsing chain, is always in a high-temperature phase; random-walk 
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behaviour dominates everywhere except in the infinite-correlation (zero-temperature) 
limits. 

The introduction of the infinite-range (though not cumulative) effect, together with 
the weighting of the total number of visited sites, in the model of Stanley et al (1983) 
gives more importance to the energy term than in the turning-point model; in the 
repulsive case, energy always overwhelms entropy and one has SAW behaviour; in the 
attractive limit energy and entropy balance to give the intermediate behaviour (S , )  - 

(Redner and Kang 1983). The entropic term has a stronger effect in the attractive 
case because of the particular shape of the distribution curve for P N ( s )  (number of 
N-step walks that visit s sites) in the limit s / N < <  1 (Redner and Kang 1983). 

In contrast, the fact that the memory effect is cumulative in the TSAW makes it 
saturate in the attractive case. However, the repulsive case with finite repulsion does 
not cross over to the SAW, because of the peculiar local criterion of weighting steps: 
provided that the repulsion is finite, the walk will eventually turn back on itself, and 
equation (1) shows that in one dimension it can keep going backwards indefinitely 
without further obstacles (de Queiroz et a1 1984). 

Finally, with a global weighting of walks, and a long-range cumulative memory 
effect, energy always dominates in the Domb-Joyce model and one has either the SAW 

in the repulsive case or a trapping regime (perhaps even more drastic than for the 
TSAW, as pointed out above) in the attractive one. 

In summary, we have made a comparative study of some correlated random-walk 
models ; from the mechanisms involved, we have seen that local normalisation condi- 
tions tend to favour the entropic term, whereas global normalisation seems to favour 
energy; long-range memory favours energy, and this is enhanced if the memory is 
cumulative. We hope that this work will be relevant as a first step towards a unified 
view of various random-walk related models (up to now considered mostly separately). 
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